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CONVERGENCE ANALYSIS OF PROGRAM
VARIABLES

FIELD OF THE INVENTION

The present invention relates to the field of program opti-
mization, and more particularly to a system and method for
convergence analysis of program variables.

DESCRIPTION OF THE RELATED ART

In the compilation of programs, certain optimizations that
depend on knowing all possible values (which may be
referred to herein as APV, for convenience) of certain vari-
ables may be applied. For example, if one knows all possible
values of a variable are positive, then its data type may be
changed to be UNSIGNED. As another example, if one
knows that all possible values of a variable do not overlap
those of a second variable, then any equality comparison
between these two variables may be replaced by the constant
FALSE.

Note that “all possible values” of a variable is different
from its “range”. The range of a variable specifies its mini-
mum and maximum values, and is a super set of all possible
values of the variable, is not the same. For example, all pos-
sible values of a first variable may be even, all possible values
of a second variable may be odd, and while these two vari-
ables may have overlapping ranges, their “all possible values”
are non-overlapping.

One way to determine all possible values of one or more
variables in a program is to execute the program a number of
times and collect actual values assigned to each of these
variables during these executions. As used herein, the term
“convergence number” refers to the number of times a pro-
gram must be executed in order to collect all possible values
for a particular set of variables. If the convergence number N
exists for a specified set of variables in a program, the pro-
gram may be executed N times, and all actual values assigned
to each of the variables collected over the N executions to
determine their APVs, thereby enabling optimizations that
depend on them.

However, determining whether such a convergence num-
ber (or more generally, a convergence property) exists for a
given set of program variables, and if so, its value, can be
problematic and error prone.

Graphical programming has become a powerful tool avail-
able to programmers. Graphical programming environments
such as the National Instruments LabVIEW product have
become very popular. Tools such as LabVIEW have greatly
increased the productivity of programmers, and increasing
numbers of programmers are using graphical programming
environments to develop their software applications. In par-
ticular, graphical programming tools are being used for test
and measurement, data acquisition, process control, man
machine interface (MMI), supervisory control and data
acquisition (SCADA) applications, modeling, simulation,
image processing/machine vision applications, and motion
control, among others.

SUMMARY OF THE INVENTION

Various embodiments of a system and method for conver-
gence analysis of program variables are presented below.

One or more state variables of a first program may be
determined based on dependencies of one or more variables
in the first program. As used herein, the term “state variable”
refers to variables that carry (e.g., preserve or maintain) state
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from one call of a program to another call of the program.
Thus, for example, in the C programming language these are
global and static variables; in the LabVIEW™ graphical pro-
gramming system (i.e., the G programming language) state
variables include “feedback” and “feed forward” nodes; and
in hardware, state variables are memories. Note that “feed-
back variables” (or nodes) are those variables that are depen-
dent on themselves, i.e., that are dependent upon previous
values of themselves, e.g., x=x+1, or more generally, {x,y}=
(or :=, meaning “is assigned”) function(x, y), where x and y
are variables that (somehow) depend on one another. Thus,
state variables are different from normal variables in that their
“lifetime” is longer than a single execution of the program in
which they are used.

The first program may be any of a variety of program types,
e.g., one or more of: a data flow program, a graphical pro-
gram, a graphical data flow program, or a hardware descrip-
tion program, among others. As further examples, in some
embodiments, the first program may be or include one or
more of: a procedural program, a functional program, a tex-
tual program, or a declarative program. Additionally, it
should be noted that the one or more variables upon whose
dependencies the state variables are (at least partially) deter-
mined may be of various kinds. For example, the one or more
variables may include one or more of: at least one variable in
at least one array indexing expression for an array in the first
program, at least one set of variables that is dependent upon
itself, or at least one variable whose value is set by an opera-
tion that includes input or output range properties to be opti-
mized. In various embodiments, the one or more variables
may have data types including one or more of: scalar, array, or
heterogeneous data structure (i.e., with elements of different
data types), which may also be referred to as a cluster.

The dependencies (of the one or more variables) may
include one or more of: a data dependency through variable
assignment, a control dependency through control structures,
or a transitive closure of a data or control dependency, among
others. The one or more state variables may include one or
more of: at least one static variable, at least one global vari-
able, at least one feedback node in a datatlow language, at
least one modal parameter, or at least one parameter that takes
onone of a plurality of values throughout execution of the first
program.

Thus, a wide variety of first programs, variables, depen-
dencies, and state variables are contemplated.

A second program corresponding to the first program may
be created based on the one or more state variables and
dependencies of the one or more state variables. In various
embodiments, the second program may have any of a variety
of forms (or combinations of such forms). For example, in
one embodiment, the second program may be smaller than the
first program. In another embodiment, the second program
may be a program that executes faster than the first program.
In a further embodiment, the second program may be an
empty program with no state variables. In a yet further
embodiment, the second program may be the same as the first
program. More generally, the second program may be or
include one or more of: smaller than the first program, a
program that executes faster than the first program, an empty
program with no state variables, or the same as the first
program.

The second program may be executed a plurality of times.
For each execution, the method may perform: recording val-
ues of the one or more state variables, determining an execu-
tion count, comparing the values to corresponding values
from previous executions of the second program, and termi-
nating said executing in response to determining that the
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values match corresponding values from at least one previous
execution of the second program. Note that in some embodi-
ments, a stopping condition, e.g., an execution count thresh-
old or other stopping condition may be specified, and if
matching values are not found before the stopping condition
obtains, the iterative executions may terminate with a null
result (and the method may indicate this null result to the user,
e.g., on the display, in a log file, etc.).

Recording values of the one or more state variables may
include one or more of: collecting unique values assigned to
each variable, or collecting one or more derivative properties
for values assigned to each variable, e.g., storing maximum
and/or minimum value so far, average values, variance, etc.

In one embodiment, the above determining of one or more
state variables, the creating, and the executing may be per-
formed as part of compiling the first program. Moreover, in
various embodiments, where executing the second program
may include one or more of: running compiled code on a
computer, where the compiled code is generated from at least
a portion of the second program, interpreting program state-
ments of at least a portion of the second program, or evaluat-
ing operations in a graph generated from at least a portion of
the second program.

In one embodiment, the method may determine, based on
the execution count, a convergence property for the first pro-
gram that indicates a number of executions of the first pro-
gram required to generate all possible values of the one or
more variables, and the convergence property may be stored,
e.g., in a memory medium. The convergence property may
then be useable to optimize the first program, as discussed in
more detail below.

The convergence property may be of any of a variety of
forms, including, but not limited to, one or more of: a finite
integer value, a real value, indicating a fractional execution of
the program, an indication that there is no convergence, or a
convergence property for each variable of at least a subset of
variables in the first program (e.g., a set of convergence prop-
erties).

In one embodiment, the method may further include com-
piling the first program based on the convergence property,
where the compiling includes generating code configured to
run on one or more of: a desktop computer with one or more
central processing unit (CPU) cores, an embedded computer
with one or more CPU cores, a graphics processing unit
(GPU), an embedded GPU, a field programmable gate array
(FPGA), or an application specific integrated circuit (ASIC).
Thus, any of a variety of execution platforms may be used as
desired.

In some embodiments, the method may further include
optimizing the first program based on the convergence prop-
erty. Such optimizing may include, but is not limited to, one or
more of: constant propagation and folding, range propagation
and minimization, array size inference, dead code elimina-
tion, loop transformations, array transformations, memory
optimization, inserting assertions (e.g., assumptions, or prop-
erties for testing purposes), inserting code coverage instru-
mentation, loop unrolling, in-lining of subprograms, out-lin-
ing of portions of programs, data type propagation and
refinement, float to fixed data type conversion, optimization
of overflow/quantization operations, type conversion inser-
tion, or converting to look-up table implementations, among
others.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be
obtained when the following detailed description of the pre-
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ferred embodiment is considered in conjunction with the
following drawings, in which:

FIG. 1A illustrates a computer system configured to
execute a graphical program according to an embodiment of
the present invention;

FIG. 1B illustrates a network system comprising two or
more computer systems that may implement an embodiment
of the present invention;

FIG. 2A illustrates an instrumentation control system
according to one embodiment of the invention;

FIG. 2B illustrates an industrial automation system accord-
ing to one embodiment of the invention;

FIG. 3A is a high level block diagram of an exemplary
system which may execute or utilize graphical programs;

FIG. 3B illustrates an exemplary system which may per-
form control and/or simulation functions utilizing graphical
programs;

FIG. 4 is an exemplary block diagram of the computer
systems of FIGS. 1A, 1B, 2A and 2B and 3B;

FIG. 5 is a flowchart diagram illustrating one embodiment
of'a method for convergence analysis of program variables;

FIG. 6 is a flowchart diagram of an exemplary embodiment
of the method of FIG. 5; and

FIGS. 7A and 7B respectively illustrate an exemplary
graphical first program, and an exemplary graphical second
program, according to one embodiment.

While the invention is susceptible to various modifications
and alternative forms, specific embodiments thereof are
shown by way of example in the drawings and are herein
described in detail. It should be understood, however, that the
drawings and detailed description thereto are not intended to
limit the invention to the particular form disclosed, but on the
contrary, the intention is to cover all modifications, equiva-
lents and alternatives falling within the spirit and scope of the
present invention as defined by the appended claims.

DETAILED DESCRIPTION OF THE INVENTION
Incorporation by Reference

The following references are hereby incorporated by ref-
erence in their entirety as though fully and completely set
forth herein:

U.S. Pat. No. 4,914,568 titled “Graphical System for Model-
ing a Process and Associated Method,” issued on Apr. 3,
1990.

U.S. Pat. No. 5,481,741 titled “Method and Apparatus for
Providing Attribute Nodes in a Graphical Data Flow Envi-
ronment”.

U.S. Pat. No. 6,173,438 titled “Embedded Graphical Pro-
gramming System” filed Aug. 18, 1997.

U.S. Pat. No. 6,219,628 titled “System and Method for Con-
figuring an Instrument to Perform Measurement Functions
Utilizing Conversion of Graphical Programs into Hard-
ware Implementations,” filed Aug. 18, 1997.

U.S. Pat. No. 7,210,117 titled “System and Method for Pro-
grammatically Generating a Graphical Program in
Response to Program Information,” filed Dec. 20, 2000.

TERMS

The following is a glossary of terms used in the present
application:

Memory Medium—Any of various types of non-transitory
computer accessible memory devices or storage devices. The
term “memory medium” is intended to include an installation
medium, e.g., a CD-ROM, floppy disks 104, or tape device; a
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computer system memory or random access memory such as
DRAM, DDR RAM, SRAM, EDO RAM, Rambus RAM,
etc.; a non-volatile memory such as a Flash, magnetic media,
e.g., ahard drive, or optical storage; registers, or other similar
types of memory elements, etc. The memory medium may
comprise other types of non-transitory memory as well or
combinations thereof. In addition, the memory medium may
be located in a first computer in which the programs are
executed, or may be located in a second different computer
which connects to the first computer over a network, such as
the Internet. In the latter instance, the second computer may
provide program instructions to the first computer for execu-
tion. The term “memory medium” may include two or more
memory mediums which may reside in different locations,
e.g., indifferent computers that are connected over a network.

Carrier Medium—a memory medium as described above,
as well as a physical transmission medium, such as a bus,
network, and/or other physical transmission medium that
conveys signals such as electrical, electromagnetic, or digital
signals.

Programmable Hardware Element—includes various
hardware devices comprising multiple programmable func-
tion blocks connected via a programmable interconnect.
Examples include FPGAs (Field Programmable Gate
Arrays), PLDs (Programmable Logic Devices), FPOAs
(Field Programmable Object Arrays), and CPLDs (Complex
PLDs). The programmable function blocks may range from
fine grained (combinatorial logic or look up tables) to coarse
grained (arithmetic logic units or processor cores). A pro-
grammable hardware element may also be referred to as
“reconfigurable logic”.

Software Program—the term “software program” is
intended to have the full breadth of its ordinary meaning, and
includes any type of program instructions, code, script and/or
data, or combinations thereof, that may be stored in a memory
medium and executed by a processor. Exemplary software
programs include programs written in text-based program-
ming languages, such as C, C++, PASCAL, FORTRAN,
COBOL, JAVA, assembly language, etc.; graphical programs
(programs written in graphical programming languages);
assembly language programs; programs that have been com-
piled to machine language; scripts; and other types of execut-
able software. A software program may comprise two or more
software programs that interoperate in some manner. Note
that various embodiments described herein may be imple-
mented by a computer or software program. A software pro-
gram may be stored as program instructions on a memory
medium.

Hardware Configuration Program—a program, e.g., a
netlist or bit file, that can be used to program or configure a
programmable hardware element.

Program—the term “program” is intended to have the full
breadth of its ordinary meaning. The term “program”
includes 1) a software program which may be stored in a
memory and is executable by a processor or 2) a hardware
configuration program useable for configuring a program-
mable hardware element.

Graphical Program—A program comprising a plurality of
interconnected nodes or icons, wherein the plurality of inter-
connected nodes or icons visually indicate functionality of
the program. The interconnected nodes or icons are graphical
source code for the program. Graphical function nodes may
also be referred to as blocks.

The following provides examples of various aspects of
graphical programs. The following examples and discussion
are not intended to limit the above definition of graphical
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6

program, but rather provide examples of what the term
“graphical program” encompasses:

The nodes in a graphical program may be connected in one
or more of a data flow, control flow, and/or execution flow
format. The nodes may also be connected in a “signal flow”
format, which is a subset of data flow.

Exemplary graphical program development environments
which may be used to create graphical programs include
LabVIEW®, DasylLab™, DIADem™ and Matrixx/System-
Build™ from National Instruments, Simulink® from the
MathWorks, VEE™ from Agilent, WiT™ from Coreco,
Vision Program Manager™ from PPT Vision, Soft WIRE™
from Measurement Computing, Sanscript™ from North-
woods Software, Khoros™ from Khoral Research, SnapMas-
ter™ from HEM Data, VisSim™ from Visual Solutions,
ObjectBench™ by SES (Scientific and Engineering Soft-
ware), and VisiDAQ™ from Advantech, among others.

The term “graphical program” includes models or block
diagrams created in graphical modeling environments,
wherein the model or block diagram comprises intercon-
nected blocks (i.e., nodes) or icons that visually indicate
operation of the model or block diagram; exemplary graphi-
cal modeling environments include Simulink®, System-
Build™, VisSim™, Hypersignal Block Diagram™, etc.

A graphical program may be represented in the memory of
the computer system as data structures and/or program
instructions. The graphical program, e.g., these data struc-
tures and/or program instructions, may be compiled or inter-
preted to produce machine language that accomplishes the
desired method or process as shown in the graphical program.

Input datato a graphical program may be received from any
of various sources, such as from a device, unit under test, a
process being measured or controlled, another computer pro-
gram, a database, or from a file. Also, a user may input data to
a graphical program or virtual instrument using a graphical
user interface, e.g., a front panel.

A graphical program may optionally have a GUI associated
with the graphical program. In this case, the plurality of
interconnected blocks or nodes are often referred to as the
block diagram portion of the graphical program.

Node—In the context of a graphical program, an element
that may be included in a graphical program. The graphical
program nodes (or simply nodes) in a graphical program may
also be referred to as blocks. A node may have an associated
icon that represents the node in the graphical program, as well
as underlying code and/or data that implements functionality
of the node. Exemplary nodes (or blocks) include function
nodes, sub-program nodes, terminal nodes, structure nodes,
etc. Nodes may be connected together in a graphical program
by connection icons or wires.

Data Flow Program—A Software Program in which the
program architecture is that of a directed graph specifying the
flow of data through the program, and thus functions execute
whenever the necessary input data are available. Said another
way, data flow programs execute according to a data flow
model of computation under which program functions are
scheduled for execution in response to their necessary input
data becoming available. Data flow programs can be con-
trasted with procedural programs, which specify an execution
flow of computations to be performed. As used herein “data
flow” or “data flow programs” refer to “dynamically-sched-
uled data flow” and/or “statically-defined data flow”.

Graphical Data Flow Program (or Graphical Data Flow
Diagram)—A Graphical Program which is also a Data Flow
Program. A Graphical Data Flow Program comprises a plu-
rality of interconnected nodes (blocks), wherein at least a
subset of the connections among the nodes visually indicate
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that data produced by one node is used by another node. A
LabVIEW VI is one example of a graphical data flow pro-
gram. A Simulink block diagram is another example of a
graphical data flow program.

Graphical User Interface—this term is intended to have the
full breadth of its ordinary meaning. The term “Graphical
User Interface” is often abbreviated to “GUI”. A GUI may
comprise only one or more input GUI elements, only one or
more output GUI elements, or both input and output GUI
elements.

The following provides examples of various aspects of
GUIs. The following examples and discussion are not
intended to limit the ordinary meaning of GUI, but rather
provide examples of what the term “graphical user interface”
encompasses:

A GUI may comprise a single window having one or more
GUI Elements, or may comprise a plurality of individual GUI
Elements (or individual windows each having one or more
GUI Elements), wherein the individual GUI Elements or
windows may optionally be tiled together.

A GUI may be associated with a graphical program. In this
instance, various mechanisms may be used to connect GUI
Elements in the GUI with nodes in the graphical program. For
example, when Input Controls and Output Indicators are cre-
ated in the GUI, corresponding nodes (e.g., terminals) may be
automatically created in the graphical program or block dia-
gram. Alternatively, the user can place terminal nodes in the
block diagram which may cause the display of corresponding
GUI Elements front panel objects in the GUI, either at edit
time or later at run time. As another example, the GUI may
comprise GUI Elements embedded in the block diagram por-
tion of the graphical program.

Front Panel—A Graphical User Interface that includes
input controls and output indicators, and which enables a user
to interactively control or manipulate the input being pro-
vided to a program, and view output of the program, while the
program is executing.

A front panel is a type of GUIL. A front panel may be
associated with a graphical program as described above.

In an instrumentation application, the front panel can be
analogized to the front panel of an instrument. In an industrial
automation application the front panel can be analogized to
the MMI (Man Machine Interface) of a device. The user may
adjust the controls on the front panel to affect the input and
view the output on the respective indicators.

Graphical User Interface Element—an element of a
graphical user interface, such as for providing input or dis-
playing output. Exemplary graphical user interface elements
comprise input controls and output indicators.

Input Control—a graphical user interface element for pro-
viding user input to a program. An input control displays the
value input by the user and is capable of being manipulated at
the discretion of the user. Exemplary input controls comprise
dials, knobs, sliders, input text boxes, etc.

Output Indicator—a graphical user interface element for
displaying output from a program. Exemplary output indica-
tors include charts, graphs, gauges, output text boxes,
numeric displays, etc. An output indicator is sometimes
referred to as an “output control”.

Computer System—any of various types of computing or
processing systems, including a personal computer system
(PC), mainframe computer system, workstation, network
appliance, Internet appliance, personal digital assistant
(PDA), television system, grid computing system, or other
device or combinations of devices. In general, the term “com-
puter system” can be broadly defined to encompass any

10

15

20

25

30

35

40

45

50

55

60

65

8

device (or combination of devices) having at least one pro-
cessor that executes instructions from a memory medium.

Measurement Device—includes instruments, data acqui-
sition devices, smart sensors, and any of various types of
devices that are configured to acquire and/or store data. A
measurement device may also optionally be further config-
ured to analyze or process the acquired or stored data.
Examples of a measurement device include an instrument,
such as a traditional stand-alone “box” instrument, a com-
puter-based instrument (instrument on a card) or external
instrument, a data acquisition card, a device external to a
computer that operates similarly to a data acquisition card, a
smart sensor, one or more DAQ or measurement cards or
modules in a chassis, an image acquisition device, such as an
image acquisition (or machine vision) card (also called a
video capture board) or smart camera, a motion control
device, a robot having machine vision, and other similar types
of devices. Exemplary “stand-alone” instruments include
oscilloscopes, multimeters, signal analyzers, arbitrary wave-
form generators, spectroscopes, and similar measurement,
test, or automation instruments.

A measurement device may be further configured to per-
form control functions, e.g., in response to analysis of the
acquired or stored data. For example, the measurement device
may send a control signal to an external system, such as a
motion control system or to a sensor, in response to particular
data. A measurement device may also be configured to per-
form automation functions, i.e., may receive and analyze
data, and issue automation control signals in response.

Functional Unit (or Processing Element)—refers to vari-
ous elements or combinations of elements. Processing ele-
ments include, for example, circuits such as an ASIC (Appli-
cation Specific Integrated Circuit), portions or circuits of
individual processor cores, entire processor cores, individual
processors, programmable hardware devices such as a field
programmable gate array (FPGA), and/or larger portions of
systems that include multiple processors, as well as any com-
binations thereof.

Automatically—refers to an action or operation performed
by a computer system (e.g., software executed by the com-
puter system) or device (e.g., circuitry, programmable hard-
ware elements, ASICs, etc.), without user input directly
specifying or performing the action or operation. Thus the
term “automatically” is in contrast to an operation being
manually performed or specified by the user, where the user
provides input to directly perform the operation. An auto-
matic procedure may be initiated by input provided by the
user, but the subsequent actions that are performed “automati-
cally” are not specified by the user, i.e., are not performed
“manually”, where the user specifies each action to perform.
For example, a user filling out an electronic form by selecting
each field and providing input specitying information (e.g.,
by typing information, selecting check boxes, radio selec-
tions, etc.) is filling out the form manually, even though the
computer system must update the form in response to the user
actions. The form may be automatically filled out by the
computer system where the computer system (e.g., software
executing on the computer system) analyzes the fields of the
form and fills in the form without any user input specifying
the answers to the fields. As indicated above, the user may
invoke the automatic filling of the form, but is not involved in
the actual filling of the form (e.g., the user is not manually
specifying answers to fields but rather they are being auto-
matically completed). The present specification provides
various examples of operations being automatically per-
formed in response to actions the user has taken.
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Concurrent—refers to parallel execution or performance,
where tasks, processes, or programs are performed in an at
least partially overlapping manner. For example, concurrency
may be implemented using “strong” or strict parallelism,
where tasks are performed (at least partially) in parallel on
respective computational elements, or using “weak parallel-
ism”, where the tasks are performed in an interleaved manner,
e.g., by time multiplexing of execution threads.

Convergence Property—an indication of the number of
times a program must be executed in order to collect all
possible values for a particular set of variables. One particular
example of a convergence property is a convergence number,
which is thus the number of times the program must be
executed in order to collect all possible values for a particular
set of variables, e.g., array indices. Other forms of a conver-
gence property may include multiple such numbers, e.g., for
array indices of different arrays, or derivative values, e.g.,
maximum convergence numbers, etc., and so forth, as
desired.

Compatible—refers to transforms that can operate on the
same data without conflict. For example, consider array par-
titioning transforms after unrolling program loops, where the
array partitions in these unrolled loops for the same arrays do
not conflict with one another. For example, if one loop unroll
would partition an array into two sub-arrays of equal sizes,
and another loop unroll of a different loop would partition the
same array into three sub-arrays of equal sizes, the partitions
(two and three) are considered incompatible because a single
array cannot simultaneously be partitioned into two and three
arrays at the same time. In contrast, if the partition numbers
are instead two and four, they are compatible because an array
can be partitioned into two arrays of equal sizes, which can
then each be partitioned into another two further sub-arrays of
equal sizes, therefore making four sub-arrays of equal sizes.
Thus, two effects (e.g., partition numbers) on the same data
(in this case, partitioning the same array into two and into four
sub-arrays) are compatible if one transform is a subset of
another (partitioning into 4 arrays subsumes partitioning into
two sub-arrays). Thus, this particular array partitioning is an
example where “equality” of transforms (and their effects) is
not required, but rather where one transform (and its effects)
is “subsumed” by another transform (four is divisible by two).

Jamming Factor (of arrays)—in the context of program
loop transformations, e.g., “unroll-and-jam” loop transfor-
mation that include loop unrolling followed by loop fusion,
refers to the loop unrolling factor.

Array Remapping—refers to rewriting a program’s array
accesses as accesses to a second array of different dimension
and/or data types. Note that there are more general versions of
array remapping, but thatimportant array remappings include
cases where an N word by M bit array is rewritten into an N/2
by M*2 bit array, or N/4 by M*4 bit array. Thus, for example,
a 100 word array of integers may be remapped into a 50 word
array of longs (long integers), changing all array accesses
accordingly).

FIG. 1A—Computer System

FIG. 1A illustrates a computer system 82 configured to
implement embodiments of the present techniques.

As shown in FIG. 1A, the computer system 82 may include
a display device configured to display a program, such as a
graphical program, as the program is created, executed, or
analyzed.

The display device may also be configured to display a
graphical user interface, e.g., in embodiments where the pro-
gram is a graphical program, a front panel, of the program
during execution of the program. The graphical user interface
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may comprise any type of graphical user interface, e.g.,
depending on the computing platform.

The computer system 82 may include at least one memory
medium on which one or more computer programs or soft-
ware components according to embodiments of the present
invention may be stored. For example, in some embodiments,
the computer system may store one or more software tools
configured to perform the convergence analysis techniques
disclosed herein. For example, in some embodiments, the
memory medium may store one or more graphical programs
which are executable to perform the methods described
herein. Additionally, the memory medium may store a graphi-
cal programming development environment application used
to create and/or execute such graphical programs. In some
embodiments, the software tool(s) may be incorporated in or
integrated into the development environment. The memory
medium may also store operating system software, as well as
other software for operation of the computer system. Various
embodiments further include receiving or storing instructions
and/or data implemented in accordance with the foregoing
description upon a carrier medium.

FIG. 1B—Computer Network

FIG. 1B illustrates a system including a first computer
system 82 that is coupled to a second computer system 90.
The computer system 82 may be coupled via a network 84 (or
a computer bus) to the second computer system 90. The
computer systems 82 and 90 may each be any of various
types, as desired. The network 84 can also be any of various
types, including a LAN (local area network), WAN (wide area
network), the Internet, or an Intranet, among others. The
computer systems 82 and 90 may be configured to execute a
graphical program in a distributed fashion. For example,
computer 82 may execute a first portion of the block diagram
of'a graphical program and computer system 90 may execute
a second portion of the block diagram of the graphical pro-
gram. As another example, computer 82 may display the
graphical user interface of a graphical program and computer
system 90 may execute the block diagram of the graphical
program.

In one embodiment, the graphical user interface of the
graphical program may be displayed on a display device of
the computer system 82, and the block diagram may execute
on a device coupled to the computer system 82. The device
may include a programmable hardware element and/or may
include a processor and memory medium which may execute
areal time operating system. In one embodiment, the graphi-
cal program may be downloaded and executed on the device.
For example, an application development environment with
which the graphical program is associated may provide sup-
port for downloading a graphical program for execution on
the device in areal time system. Note, however, that in various
embodiments, any type of program may be used or analyzed
as desired, e.g., textual or graphical programs.

Exemplary Systems

Embodiments of the present invention may be involved
with performing test and/or measurement functions; control-
ling and/or modeling instrumentation or industrial automa-
tion hardware; modeling and simulation functions, e.g., mod-
eling or simulating a device or product being developed or
tested, etc. Exemplary test applications where the graphical
program may be used include hardware-in-the-loop testing
and rapid control prototyping, among others.

However, it is noted that embodiments of the present inven-
tion can be used for a plethora of applications and is not
limited to the above applications. In other words, applications
discussed in the present description are exemplary only, and
embodiments of the present invention may be used in any of
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various types of systems. Thus, embodiments of the system
and method of the present invention is configured to be used
in any of various types of applications, including the control
of other types of devices such as multimedia devices, video
devices, audio devices, telephony devices, Internet devices,
etc., as well as general purpose software applications such as
word processing, spreadsheets, network control, network
monitoring, financial applications, games, etc.

FIG. 2A illustrates an exemplary instrumentation control
system 100 which may implement embodiments of the inven-
tion. The system 100 comprises a host computer 82 which
couples to one or more instruments. The host computer 82
may comprise a CPU, a display screen, memory, and one or
more input devices such as a mouse or keyboard as shown.
The computer 82 may operate with the one or more instru-
ments to analyze, measure or control a unit under test (UUT)
or process 150, e.g., via execution of software 104.

The one or more instruments may include a GPIB instru-
ment 112 and associated GPIB interface card 122, a data
acquisition board 114 inserted into or otherwise coupled with
chassis 124 with associated signal conditioning circuitry 126,
a VXI instrument 116, a PXI instrument 118, a video device
or camera 132 and associated image acquisition (or machine
vision) card 134, a motion control device 136 and associated
motion control interface card 138, and/or one or more com-
puter based instrument cards 142, among other types of
devices. The computer system may couple to and operate with
one or more of these instruments. The instruments may be
coupledto theunitundertest (UUT) or process 150, or may be
coupled to receive field signals, typically generated by trans-
ducers. The system 100 may be used in a data acquisition and
control application, in a test and measurement application, an
image processing or machine vision application, a process
control application, a man-machine interface application, a
simulation application, or a hardware-in-the-loop validation
application, among others.

FIG. 2B illustrates an exemplary industrial automation
system 200 which may implement embodiments of the inven-
tion. The industrial automation system 200 is similar to the
instrumentation or test and measurement system 100 shown
in FIG. 2A. Elements which are similar or identical to ele-
ments in FIG. 2A have the same reference numerals for con-
venience. The system 200 may comprise a computer 82
which couples to one or more devices or instruments. The
computer 82 may comprise a CPU, a display screen, memory,
and one or more input devices such as a mouse or keyboard as
shown. The computer 82 may operate with the one or more
devices to perform an automation function with respect to a
process or device 150, such as MMI (Man Machine Inter-
face), SCADA (Supervisory Control and Data Acquisition),
portable or distributed data acquisition, process control,
advanced analysis, or other control, among others, e.g., via
execution of software 104.

The one or more devices may include a data acquisition
board 114 inserted into or otherwise coupled with chassis 124
with associated signal conditioning circuitry 126, a PXI
instrument 118, a video device 132 and associated image
acquisition card 134, a motion control device 136 and asso-
ciated motion control interface card 138, a fieldbus device
270 and associated fieldbus interface card 172, a PL.C (Pro-
grammable Logic Controller) 176, a serial instrument 282
and associated serial interface card 184, or a distributed data
acquisition system, such as Fieldpoint system 185, available
from National Instruments Corporation, among other types of
devices.

FIG. 3A is a high level block diagram of an exemplary
system which may execute or utilize graphical programs.
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FIG. 3A illustrates a general high-level block diagram of a
generic control and/or simulation system which comprises a
controller 92 and a plant 94. The controller 92 represents a
control system/algorithm the user may be trying to develop.
The plant 94 represents the system the user may be trying to
control. For example, if the user is designing an ECU fora car,
the controller 92 is the ECU and the plant 94 is the car’s
engine (and possibly other components such as transmission,
brakes, and so on.) As shown, a user may create a graphical
program that specifies or implements the functionality of one
or both of the controller 92 and the plant 94. For example, a
control engineer may use a modeling and simulation tool to
create a model (graphical program) of the plant 94 and/or to
create the algorithm (graphical program) for the controller 92.

FIG. 3B illustrates an exemplary system which may per-
form control and/or simulation functions. As shown, the con-
troller 92 may be implemented by a computer system 82 or
other device (e.g., including a processor and memory medium
and/or including a programmable hardware element) that
executes or implements a graphical program. In a similar
manner, the plant 94 may be implemented by a computer
system or other device 144 (e.g., including a processor and
memory medium and/or including a programmable hardware
element) that executes or implements a graphical program, or
may be implemented in or as a real physical system, e.g., acar
engine.

In one embodiment of the invention, one or more graphical
programs may be created which are used in performing rapid
control prototyping. Rapid Control Prototyping (RCP) gen-
erally refers to the process by which a user develops a control
algorithm and quickly executes that algorithm on a target
controller connected to a real system. The user may develop
the control algorithm using a graphical program, and the
graphical program may execute on the controller 92, e.g., on
a computer system or other device. The computer system 82
may be a platform that supports real time execution, e.g., a
device including a processor that executes a real time operat-
ing system (RTOS), or a device including a programmable
hardware element.

In one embodiment of the invention, one or more graphical
programs may be created which are used in performing Hard-
ware in the Loop (HIL) simulation. Hardware in the Loop
(HIL) refers to the execution of the plant model 94 in real time
to test operation of a real controller 92. For example, once the
controller 92 has been designed, it may be expensive and
complicated to actually test the controller 92 thoroughly in a
real plant, e.g., areal car. Thus, the plant model (implemented
by a graphical program) is executed in real time to make the
real controller 92 “believe” or operate as if it is connected to
a real plant, e.g., a real engine.

In the embodiments of FIGS. 2A, 2B, and 3B above, one or
more of the various devices may couple to each other over a
network, such as the Internet. In one embodiment, the user
operates to select a target device from a plurality of possible
target devices for programming or configuration using a
graphical program. Thus the user may create a graphical
program on a computer and use (execute) the graphical pro-
gram on that computer or deploy the graphical program to a
target device (for remote execution on the target device) that
is remotely located from the computer and coupled to the
computer through a network.

Graphical software programs which perform data acquisi-
tion, analysis and/or presentation, e.g., for measurement,
instrumentation control, industrial automation, modeling, or
simulation, such as in the applications shown in FIGS. 2A and
2B, may be referred to as virtual instruments.
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FIG. 4—Computer System Block Diagram

FIG. 4 is a block diagram 12 representing one embodiment
of the computer system 82 and/or 90 illustrated in FIGS. 1A
and 1B, or computer system 82 shown in FIG. 2A or 2B. Itis
noted that any type of computer system configuration or
architecture can be used as desired, and FIG. 4 illustrates a
representative PC embodiment. It is also noted that the com-
puter system may be a general purpose computer system, a
computer implemented on a card installed in a chassis, or
other types of embodiments. Elements of a computer not
necessary to understand the present description have been
omitted for simplicity.

The computer may include at least one central processing
unit or CPU (processor) 160 which is coupled to a processor
or host bus 162. The CPU 160 may be any of various types,
including an x86 processor, e.g., a Pentium class, a PowerPC
processor, a CPU from the SPARC family of RISC proces-
sors, as well as others. A memory medium, typically com-
prising RAM and referred to as main memory, 166 is coupled
to the host bus 162 by means of memory controller 164. The
main memory 166 may store one or more programs config-
ured to perform convergence analysis on program variables,
according to the present techniques. The main memory may
also store operating system software, as well as other soft-
ware for operation of the computer system.

The host bus 162 may be coupled to an expansion or
input/output bus 170 by means of a bus controller 168 or bus
bridge logic. The expansion bus 170 may be the PCI (Periph-
eral Component Interconnect) expansion bus, although other
bus types can be used. The expansion bus 170 includes slots
for various devices such as described above. The computer 82
further comprises a video display subsystem 180 and hard
drive 182 coupled to the expansion bus 170. The computer 82
may also comprise a GPIB card 122 coupled to a GPIB bus
112, and/or an MXI device 186 coupled to a VXI chassis 116.

As shown, a device 190 may also be connected to the
computer. The device 190 may include a processor and
memory which may execute a real time operating system. The
device 190 may also or instead comprise a programmable
hardware element. The computer system may be configured
to deploy a graphical program to the device 190 for execution
of the graphical program on the device 190. The deployed
graphical program may take the form of graphical program
instructions or data structures that directly represents the
graphical program. Alternatively, the deployed graphical pro-
gram may take the form of text code (e.g., C code) generated
from the graphical program. As another example, the
deployed graphical program may take the form of compiled
code generated from either the graphical program or from text
code that in turn was generated from the graphical program.
FIG. 5—Flowchart of a Method for Convergence Analysis of
Program Variables

FIG. 5 illustrates a method for performing convergence
analysis of program variables. The method shown in FIG. 5§
may be used in conjunction with any of the computer systems
or devices shown in the above Figures, among other devices.
Invarious embodiments, some of the method elements shown
may be performed concurrently, in a different order than
shown, or may be omitted. Additional method elements may
also be performed as desired. As shown, this method may
operate as follows.

In 502, one or more state variables of a first program may
be determined based on dependencies of one or more vari-
ables in the first program. As used herein, the term “state
variable” refers to variables that carry (e.g., preserve or main-
tain) state from one call of a program to another call of the
program. Thus, for example, in the C programming language
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these are global and static variables; in the LabVIEW™
graphical programming system (i.e., the G programming lan-
guage) state variables include “feedback” and “feed forward”
nodes; and in hardware, state variables are memories. Note
that “feedback variables” (or nodes) are those variables that
are dependent on themselves, i.e., that are dependent upon
previous values of themselves, e.g., x=x+1, or more gener-
ally, {x,y}=(or :=, meaning “is assigned”) function(x, y),
where x and y are variables that (somehow) depend on one
another.

Thus, state variables are different from normal variables in
that their “lifetime™ is longer than a single execution of the
program in which they are used.

The first program may be any of a variety of program types,
e.g., one or more of: a data flow program, a graphical pro-
gram, a graphical data flow program, or a hardware descrip-
tion program, among others. As further examples, in some
embodiments, the first program may be or include one or
more of: a procedural program, a functional program, a tex-
tual program, or a declarative program.

Additionally, it should be noted that the one or more vari-
ables upon whose dependencies the state variables are (at
least partially) determined may be of various kinds. For
example, the one or more variables may include one or more
of: at least one variable in at least one array indexing expres-
sion for an array in the first program, at least one set of
variables that is dependent upon itself, or at least one variable
whose value is set by an operation that includes input or
output range properties to be optimized. In various embodi-
ments, the one or more variables may have data types includ-
ing one or more of: scalar, array, or heterogeneous data struc-
ture (i.e., with elements of different data types), which may
also be referred to as a cluster.

The dependencies (of the one or more variables) may
include one or more of: a data dependency through variable
assignment, a control dependency through control structures,
or a transitive closure of a data or control dependency, among
others. The one or more state variables may include one or
more of: at least one static variable, at least one global vari-
able, at least one feedback node in a datatlow language, at
least one modal parameter, or at least one parameter that takes
onone of a plurality of values throughout execution of the first
program.

Thus, a wide variety of first programs, variables, depen-
dencies, and state variables are contemplated.

In 504, a second program corresponding to the first pro-
gram may be created based on the one or more state variables
and dependencies of the one or more state variables. In vari-
ous embodiments, the second program may have any of a
variety of forms (or combinations of such forms). For
example, in one embodiment, the second program may be
smaller than the first program. In another embodiment, the
second program may be a program that executes faster than
the first program. In a further embodiment, the second pro-
gram may be an empty program with no state variables. In a
yet further embodiment, the second program may be the same
as the first program. More generally, the second program may
be or include one or more of: smaller than the first program, a
program that executes faster than the first program, an empty
program with no state variables, or the same as the first
program.

In 506, the second program may be executed a plurality of
times. As FIG. 5 indicates, for each execution, the method
may perform: recording values of the one or more state vari-
ables, as shown in 512, determining an execution count, as per
514, comparing the values to corresponding values from pre-
vious executions of the second program, as indicated in 516,
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and terminating said executing in response to determining
that the values match corresponding values from at least one
previous execution of the second program, per 518. Note that
in some embodiments, a stopping condition, e.g., an execu-
tion count threshold or other stopping condition may be
specified, and if matching values are not found before the
stopping condition obtains, the iterative executions may ter-
minate with a null result (and the method may indicate this
null result to the user, e.g., on the display, in a log file, etc.).

Recording values of the one or more state variables may
include one or more of: collecting unique values assigned to
each variable, or collecting one or more derivative properties
for values assigned to each variable, e.g., storing maximum
and/or minimum value so far, average values, variance, etc.

In one embodiment, the determining one or more state
variables (502), the creating (504), and the executing (506)
may be performed as part of compiling the first program.
Moreover, in various embodiments, where executing the sec-
ond program (506) may include one or more of: running
compiled code on a computer, where the compiled code is
generated from at least a portion of the second program,
interpreting program statements of at least a portion of the
second program, or evaluating operations in a graph gener-
ated from at least a portion of the second program.

As FIG. 5 also shows, in 508, the method may determine,
based on the execution count, a convergence property for the
first program that indicates a number of executions of the first
program required to generate all possible values of the one or
more variables, and in 510, the convergence property may be
stored. The convergence property may then be useable to
optimize the first program, as discussed in more detail below.

The convergence property may be of any of a variety of
forms, including, but not limited to, one or more of: a finite
integer value, a real value, indicating a fractional execution of
the program, an indication that there is no convergence, or a
convergence property for each variable of at least a subset of
variables in the first program (e.g., a set of convergence prop-
erties).

In one embodiment, the method may further include com-
piling the first program based on the convergence property,
where the compiling includes generating code configured to
run on one or more of: a desktop computer with one or more
central processing unit (CPU) cores, an embedded computer
with one or more CPU cores, a graphics processing unit
(GPU), an embedded GPU, a field programmable gate array
(FPGA), or an application specific integrated circuit (ASIC).
Thus, any of a variety of execution platforms may be used as
desired.

In some embodiments, the method may further include
optimizing the first program based on the convergence prop-
erty. Such optimizing may include, but is not limited to, one or
more of: constant propagation and folding, range propagation
and minimization, array size inference, dead code elimina-
tion, loop transformations, array transformations, memory
optimization, inserting assertions (e.g., assumptions, or prop-
erties for testing purposes), inserting code coverage instru-
mentation, loop unrolling, in-lining of subprograms, out-lin-
ing of portions of programs, data type propagation and
refinement, float to fixed data type conversion, optimization
of overflow/quantization operations, type conversion inser-
tion, or converting to look-up table implementations, among
others.
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Further details and exemplary embodiments are presented
below.

Exemplary First Program (Textual)

Consider an exemplary first program that has multiple vari-
ables, for example, a, b, ¢, d, some “state variables”, for
example, X, y, 7, as well as some inputs, e.g., 11, 12, and output,
e.g., ol:

static int x:=0; // state variable x, y, z initialized to O

static int y:=0;

static int z:=0;

first program (input:il, input:i2, output:ol)

inta, b, c,d;

a:=x+1;

b:=il+z;

c:=i24z;

d:=y;

ol:=a+b+c+d;

X:=X+Y;

yoy+l;

z:=7-1;

}

Now, consider, for example, analyzing the history of vari-
able “a” for all executions of the program. First, note that the
dependency of variable “a” includes the state variable “x”
(because a:=x+1). As explained above, the dependency of a
variable is the set of variables used to calculate the variable.

Note that the state variable x is in turn dependent on state
variables x and y (because x:=x+Y), and so0, to analyze history
of “a”, the method ascertains its dependent state variables, in
this case “x”, and all state variables it/they depend on, in this
case, “x and y”. The convergence property can be determined
from this final set of state variables “x and y”, and so in this
example, state variable z, and other variables a, b, ¢, d, can be
excluded from the convergence analysis.

In the above example, the “portion of program extracted
from state variables and their dependencies” would be (as-
suming the state variables are x and y):

X:=X+Y;

yoy+1;

This is an exemplary example of the “smaller program”
case mentioned above based on this analysis of variable “a”.
Note that this example (much smaller program) illustrates a
particularly beneficial aspect of one embodiment of the
present techniques; that to analyze the convergence for vari-
able “a”, it may be sufficient to extract and analyze only this
(usually much smaller) second program.

Note that the above-mentioned special case where the sec-
ond program (extracted from the first program) is an “empty
program” occurs when there are no state variables, in which
case, the set of state variables that a variable depends on is
empty, and so the “second program” that is extracted from the
first program is empty—no state variable, no assignments to
state variables, etc., and thus the second program is really no
program at all. This case may be detected by the method (no
state variables found), and accordingly, the convergence
number (or property) may be 1. In other words, any program
without dependency on state variables may have a conver-
gence number or property of 1.

Alternatively, in the case where all variables in a program
are state variables, the second program may be identical to the
original program.

FIG. 6—Flowchart of Another Method for Convergence
Analysis of Graphical Program Variables

FIG. 6 illustrates a method for performing convergence
analysis of program variables in a graphical program, accord-
ing to one embodiment, and may be considered an exemplary
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embodiment or variation of the method of FIG. 5. The method
shown in FIG. 6 may be used in conjunction with any of the
computer systems or devices shown in the above Figures,
among other devices. In various embodiments, some of the
method elements shown may be performed concurrently, in a
different order than shown, or may be omitted. Additional
method elements may also be performed as desired. As
shown, this method may operate as follows.

In 602, all state variables that drive array access indices in
a graphical first program may be determined (or found/iden-
tified), e.g., for each array in the program. FIG. 7A illustrates
an exemplary graphical first program, according to one
embodiment. Note that graphical program elements that are
not particularly relevant to the present techniques are not
described. Note further that in such graphical programs, vari-
ables, which are the means by which data are transferred, may
be represented (or implemented) by “wires” that connect
(graphical program) nodes and terminals.

In 604, all graphical program nodes that drive the state
variables (of 602) may be tagged (via any tagging techniques
desired, including direct and indirect tagging approaches). In
other words, the nodes (graphical program logic) that form
the fanin cone for array access indices may be tagged in some
manner. As may be seen, the exemplary graphical first pro-
gram of FIG. 7A includes state variables 702, which, as
shown, are in a fanin cone for the graphical program. As those
of'skill know, a fanin cone refers to logic or program code that
drives an input, pin, or port.

As also shown, the exemplary first program further
includes a FOR loop 710, configured to process input data
using one or more variables of interest 704, indicated by the
oval inside the FOR loop. The FOR loop (of loop max=16)
iteratively reads a location (i+offset) from a memory, multi-
plies the read value by (i+offset), and then writes back to the
same location (i+offset). Note that the memory is initialized
to contain all 0’s initially. The offset is calculated by the logic
outside the FOR loop. This logic contains two feedback reg-
isters which retain their values between successive calls of the
program. Therefore, successive calls of this program will
update different sets of 16 locations of the array.

Now, consider analyzing the read and write addresses of
the array, where all of the possible values for (i+offset) this
program will actually execute needs to be determined, which
leads to the question, how many times must this program be
executed to discover/determine all possible values for (i+oft-
set)? This data element or variable “i+offset” is labeled in
FIG. 7A as “variable of interest 704. In other words, the
convergence number for this program for the variable “i+oft-
set” needs to be determined. Now, analyzing the fanin cone of
the variable “i+offset”, the state variables in the two feedback
nodes, labeled “state variables in fanin cone”, may be deter-
mined (found).

Thus, the exemplary graphical first program includes state
variables and at least one variable of interest.

In 606, values of the state variables for each array may be
recorded. For example, the tagged nodes of 604 may be used
to compose or create a graphical second program (e.g., as per
504 of FIG. 5), which may then be executed (e.g., as per 506
of FIG. 5) to generate the values of the state variables. Prior to
the first execution of the graphical second program, these
state variables may have or be given initial values. FIG. 7B
illustrates an exemplary graphical second program generated
based on dependencies and state variables of the graphical
first program of FIG. 7A, where the graphical second pro-
gram corresponds to the state variables and their assignments/
dependencies of the first program. This second program may
be used to determine the convergence number of the first
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program. Note the inclusion of the state variables in the fanin
cone 702 of the graphical first program of FIG. 7A (and
conversely, the omission of other elements not germane to the
values of the state variables, including the FOR loop 710 and
variable of interest 704, which may substantially speed the
execution of the second program, and thus provide a quick
way to determine the convergence number or property.

In 607, a determination may be made as to whether a
specified execution count threshold has been reached. If the
execution count threshold has been reached, the program (or
program design) does not converge, as indicated in 608, and
in some embodiments, a null or negative result may be
returned, e.g., for display to the user. Conversely, if the speci-
fied execution count threshold has not been reached, then in
610, the tagged nodes (from 604) may be executed, and in
612, the execution count may be incremented.

In 613, a determination may be made as to whether state
values for each memory matched a value set recorded in a
previous iteration, i.e., from some point in the execution
history. If a match is not determined in 613, the method may
return to method element 606, as shown, and may proceed as
described above, recording the current (most recent) values of
the state variables, per 606, and so forth. On the other hand, if
a match is determined in 613, then in 614, a convergence
property (e.g., convergence number) may be determined (and
stored). For example, in the embodiment shown, the conver-
gence number/property may be the current execution count
minus 1 (execution count-1), although other forms of the
convergence property are also contemplated, as noted above.

Describing the above in a different way, in one exemplary
embodiment, given a set of variables in a first program, its
convergence number may be determined by extracting state
variables based on the dependency of the program variables,
and a second (e.g., smaller) program may be generated based
on the state variables and dependency. The second program
may be executed multiple times in an iterative manner, and
values of the state variables recorded (each execution) until a
variable/value configuration is found that has been previously
recorded. The number of this execution (possibly minus 1,
depending on the counting approach) may be returned or
stored as the convergence number for the graphical first pro-
gram (and the graphical second program, as well).

Note that the convergence property (or number) is thus
generated without having to execute the entire first program,
which may provide significant savings in time and/or execu-
tion resources.

Thus, various embodiments of the above techniques may
provide for rapid convergence analysis of programs.
Creating a Graphical Program

As noted above, in some embodiments, the programs
implementing the techniques disclosed herein and/or the pro-
grams to which the techniques are applied, may be graphical
programs. The following describes various exemplary
embodiments of graphical program creation.

A graphical program may be created on the computer sys-
tem 82 (or on a different computer system). The graphical
program may be created or assembled by the user arranging
on a display a plurality of nodes or icons and then intercon-
necting the nodes to create the graphical program. Inresponse
to the user assembling the graphical program, data structures
may be created and stored which represent the graphical
program. The nodes may be interconnected in one or more of
a data flow, control flow, or execution flow format. The
graphical program may thus comprise a plurality of intercon-
nected nodes or icons which visually indicates the function-
ality of the program. As noted above, the graphical program
may comprise a block diagram and may also include a user
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interface portion or front panel portion. Where the graphical
program includes a user interface portion, the user may
optionally assemble the user interface on the display. As one
example, the user may use the LabVIEW graphical program-
ming development environment to create the graphical pro-
gram.

In an alternate embodiment, the graphical program may be
created by the user creating or specifying a prototype, fol-
lowed by automatic or programmatic creation of the graphical
program from the prototype. This functionality is described in
U.S. patent application Ser. No. 09/587,682 titled “System
and Method for Automatically Generating a Graphical Pro-
gram to Perform an Image Processing Algorithm”, which is
hereby incorporated by reference in its entirety as though
fully and completely set forth herein. The graphical program
may be created in other manners, either by the user or pro-
grammatically, as desired. The graphical program may imple-
ment a measurement function that is desired to be performed
by the instrument.

In another embodiment, a graphical user interface or front
panel for the graphical program may be created, e.g., in
response to user input. The graphical user interface may be
created in any of various ways, e.g., depending on the graphi-
cal programming development environment used.

A block diagram for the graphical program may be created.
The block diagram may be created in or using any graphical
programming development environment, such as LabVIEW,
Simulink, VEE, or another graphical programming develop-
ment environment. The block diagram may be created in
response to direct user input, e.g., the user may create the
block diagram by placing or “dragging and dropping™ icons
or nodes on the display and interconnecting the nodes in a
desired fashion. Alternatively, the block diagram may be pro-
grammatically created from a program specification. The plu-
rality of nodes in the block diagram may be interconnected to
visually indicate functionality of the graphical program. The
block diagram may have one or more of data flow, control
flow, and/or execution flow representations.

It is noted that the graphical user interface and the block
diagram may be created separately or together, in various
orders, or in an interleaved manner. In one embodiment, the
user interface elements in the graphical user interface or front
panel may be specified or created, and terminals correspond-
ing to the user interface elements may appear in the block
diagram in response. For example, when the user places user
interface elements in the graphical user interface or front
panel, corresponding terminals may appear in the block dia-
gram as nodes that may be connected to other nodes in the
block diagram, e.g., to provide input to and/or display output
from other nodes in the block diagram. In another embodi-
ment, the user interface elements may be created in response
to the block diagram. For example, the user may create the
block diagram, wherein the block diagram includes terminal
icons or nodes that indicate respective user interface ele-
ments. The graphical user interface or front panel may then be
automatically (or manually) created based on the terminal
icons or nodes in the block diagram. As another example, the
graphical user interface elements may be comprised in the
diagram.

Although the embodiments above have been described in
considerable detail, numerous variations and modifications
will become apparent to those skilled in the art once the above
disclosure is fully appreciated. It is intended that the follow-
ing claims be interpreted to embrace all such variations and
modifications.
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We claim:

1. A non-transitory computer accessible memory medium
that stores program instructions executable by a processor to
implement:

determining, based on dependencies of one or more vari-

ables in a first program, one or more state variables of the

first program, wherein the one or more variables com-

prise one or more of:

at least one variable in at least one array indexing expres-
sion for an array in the first program;

at least one set of variables that is dependent upon itself;
or

at least one variable whose value is set by an operation
that includes input or output range properties to be
optimized;

creating, based on the one or more state variables and

dependencies of the one or more state variables, a sec-
ond program corresponding to the first program;
executing the second program a plurality of times, com-
prising:
for each execution:
recording values of the one or more state variables;
determining an execution count;
comparing the values to corresponding values from
previous executions of the second program; and
terminating said executing in response to determining
that the values match corresponding values from at
least one previous execution of the second pro-
gram;
determining, based on the execution count, a convergence
property for the first program that indicates a number of
executions of the first program required to generate all
possible values of the one or more variables; and
storing the convergence property, wherein the convergence
property is useable to optimize the first program.

2. The non-transitory computer accessible memory
medium of claim 1, wherein the one or more variables have
data types comprising one or more of:

scalar;

array; or

heterogeneous data structure.

3. The non-transitory computer accessible memory
medium of claim 1, wherein the first program comprises one
or more of:

a data flow program;

a graphical program;

a graphical data flow program; or

a hardware description program.

4. The non-transitory computer accessible memory
medium of claim 1, wherein the first program comprises one
or more of:

a procedural program;

a functional program;

a textual program; or

a declarative program.

5. The non-transitory computer accessible memory
medium of claim 1, wherein said determining one or more
state variables, said creating, and said executing are per-
formed as part of compiling the first program.

6. The non-transitory computer accessible memory
medium of claim 1, wherein said

executing the second program comprises one or more of:

running compiled code on a computer, wherein the com-

piled code is generated from at least a portion of the
second program;

interpreting program statements of at least a portion of the

second program; or
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evaluating operations in a graph generated from at least a

portion of the second program.

7. The non-transitory computer accessible memory
medium of claim 1, wherein the convergence property com-
prises one or more of:

a finite integer value;

a real value, indicating a fractional execution of the pro-

gram;

an indication that there is no convergence; or

aconvergence property for each variable of at least a subset

of variables in the first program.

8. The non-transitory computer accessible memory
medium of claim 1, wherein the dependencies comprise one
or more of:

a data dependency through variable assignment;

a control dependency through control structures; or

a transitive closure of a data or control dependency.

9. The non-transitory computer accessible memory
medium of claim 1, wherein the one or more state variables
comprise one or more of:

at least one static variable;

at least one global variable;

at least one feedback node in a dataflow language;

at least one modal parameter; or

at least one parameter that takes on one of a plurality of

values throughout execution of the first program.

10. The non-transitory computer accessible memory
medium of claim 1, wherein the second program is one or
more of:

smaller than the first program;

a program that executes faster than the first program;

an empty program with no state variables; or

the same as the first program.

11. The non-transitory computer accessible memory
medium of claim 1, wherein the program instructions are
further executable to implement:

compiling the first program based on the convergence

property, said compiling comprising generating code

configured to run on one or more of:

a desktop computer with one or more central processing
unit (CPU) cores;

an embedded computer with one or more CPU cores;

a graphics processing unit (GPU);

an embedded GPU;

a field programmable gate array (FPGA); or

an application specific integrated circuit (ASIC).

12. The non-transitory computer accessible memory
medium of claim 11, wherein said recording values of the one
or more state variables comprises one or more of:

collecting unique values assigned to each state variable; or

collecting one or more derivative properties for values

assigned to each state variable.

13. The non-transitory computer accessible memory
medium of claim 12, wherein the program instructions are
further executable to implement:

optimizing the first program based on the convergence

property.

14. The non-transitory computer accessible memory
medium of claim 13, wherein said optimizing the first pro-
gram based on the convergence property comprises one or
more of:

constant propagation and folding;

range propagation and minimization;

array size inference;

dead code elimination;

loop transformations,

array transformations;
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memory optimization;

inserting assertions;

inserting code coverage instrumentation;

loop unrolling;

in-lining of subprograms;

out-lining of portions of programs;

data type propagation and refinement;

float to fixed data type conversion;

optimization of overflow/quantization operations;

type conversion insertion; or

converting to look-up table implementations.

15. A computer-implemented method, the method com-
prising:

utilizing a computer to perform:

determining, based on dependencies of one or more
variables in a first program, one or more state vari-
ables of the first program;
creating, based on the one or more state variables and
dependencies of the one or more state variables, a
second program corresponding to the first program;
executing the second program a plurality of times, com-
prising:
for each execution:
recording values of the one or more state variables,
wherein said recording values of the one or more
state variables comprises one or more of:
collecting unique values assigned to each state
variable; or
collecting one or more derivative properties for
values assigned to each state variable;
determining an execution count;
comparing the values to corresponding values from
previous executions of the second program; and
terminating said executing in response to determin-
ing that the values match corresponding values
from at least one previous execution of the sec-
ond program;
determining, based on the execution count, a conver-
gence property for the first program that indicates a
number of executions of the first program required to
generate all possible values of the one or more vari-
ables; and
storing the convergence property, wherein the conver-
gence property is useable to optimize the first pro-
gram.

16. The computer-implemented method of claim 15,
wherein the first program comprises one or more of:

a data flow program;

a graphical program;

a graphical data flow program;

a hardware description program;

a procedural program;

a functional program;

a textual program; or

a declarative program.

17. The method of claim 15, wherein said determining one
or more state variables, said creating, and said executing are
performed as part of compiling the first program.

18. The method of claim 15, wherein said executing the
second program comprises one or more of:

running compiled code on a computer, wherein the com-

piled code is generated from at least a portion of the
second program;

interpreting program statements of at least a portion of the

second program; or

evaluating operations in a graph generated from at least a

portion of the second program.
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19. The method of claim 15, wherein the convergence
property comprises one or more of:

a finite integer value;

a real value, indicating a fractional execution of the pro-

gram;

an indication that there is no convergence; or

aconvergence property for each variable of at least a subset

of variables in the first program.

20. The method of claim 19, further comprising:

compiling the first program based on the convergence

property, said compiling comprising generating code

configured to run on one or more of:

a desktop computer with one or more central processing
unit (CPU) cores;

an embedded computer with one or more CPU cores;

a graphics processing unit (GPU);

an embedded GPU;

a field programmable gate array (FPGA); or

an application specific integrated circuit (ASIC).

21. The method of claim 15, wherein the program instruc-
tions are further executable to implement:

optimizing the first program based on the convergence

property.

22. The method of claim 21, wherein said optimizing the
first program based on the convergence property comprises
one or more of:

constant propagation and folding;

range propagation and minimization;

array size inference;

dead code elimination;

loop transformations,

array transformations;

memory optimization;

inserting assertions;

inserting code coverage instrumentation;

loop unrolling;

in-lining of subprograms;

out-lining of portions of programs;

data type propagation and refinement;
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float to fixed data type conversion;

optimization of overflow/quantization operations;

type conversion Insertion; or

converting to look-up table implementations.

23. A non-transitory computer accessible memory medium
that stores program instructions executable by a processor to
implement:

determining, based on dependencies of one or more vari-

ables in a first program, one or more state variables of the
first program;

creating, based on the one or more state variables and

dependencies of the one or more state variables, a sec-
ond program corresponding to the first program;
executing the second program a plurality of times, com-
prising:
for each execution:
recording values of the one or more state variables,
wherein said recording values of the one or more
state variables comprises one or more of:
collecting unique values assigned to each state vari-
able; or
collecting one or more derivative properties for
values assigned to each state variable;
determining an execution count;
comparing the values to corresponding values from
previous executions of the second program; and
terminating said executing in response to determining
that the values match corresponding values from at
least one previous execution of the second pro-
gram;
determining, based on the execution count, a conver-
gence property for the first program that indicates a
number of executions of the first program required to
generate all possible values of the one or more vari-
ables; and
storing the convergence property, wherein the conver-
gence property is useable to optimize the first pro-
gram.



